anonymous
  • anonymous
Complex fractions...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\left[\frac{ 1 }{ 3+x }-\frac{ 1 }{ 3 }\right] \over x\]
jdoe0001
  • jdoe0001
add the top, what do you get?
anonymous
  • anonymous
don't you have to have like denominators to add the top??? and i cant figure out how to make them the same

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
well, preferably, yes, but when you don't have such, you can always make the LCD just the product of all the denominators
anonymous
  • anonymous
won't that make the numerator zero? if it helps, i'm trying to evaluate the liit of this as it approaches zero.
anonymous
  • anonymous
limit*
jdoe0001
  • jdoe0001
\(\bf \cfrac{ \frac{ 1 }{ 3+x }-\frac{ 1 }{ 3 } }{ x } \implies \cfrac{ \frac{ 3-(3+x) }{3(3+x) } }{x}\implies \cfrac{ \frac{ 3-3-x }{3(3+x) } }{x}\implies \cfrac{ 3-3-x }{3(3+x) } \times \cfrac{1}{x}\) recalll that \(\bf \cfrac{\frac{a}{b}}{\frac{c}{d}} \implies \cfrac{a}{b}\times \cfrac{d}{c}\)
jdoe0001
  • jdoe0001
well, you never said anything about limit :|
jdoe0001
  • jdoe0001
but anyhow , the same applies

Looking for something else?

Not the answer you are looking for? Search for more explanations.