Convert the following parametric equ'n into a cartesaion equ'n x= squrt (t+1) y=t-2 , So I don't know how to "eliminate" the t.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Convert the following parametric equ'n into a cartesaion equ'n x= squrt (t+1) y=t-2 , So I don't know how to "eliminate" the t.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\begin{cases}x=\sqrt{t+1}\\y=t-2\end{cases}\] There are two ways to eliminate the \(t\) here; solve for \(t\) in terms of \(y\) and plug it into the first equation, or solve for \(t\) in terms of \(x\) and plug it into the second equation. Either way works.
So its literally like a system of equation? I was taught with equations including cos and sin, so I was using the unit circle to eliminate t.
Kind of. The unit circle thing only works for some parametric equations. Let's try the second route: \[x=\sqrt{t+1}~~\Rightarrow~~x^2=t+1~~\Rightarrow~t=x^2-1\] Plugging this into the second equation, you get \[y=(x^2-1)-2=x^2-3\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

For simple problems like this one, substitution is the way to go.
Alright, its weird , this is for Cal 3 and it feels like it's linear algebra/ grade 11 stuff. Anyway thanks!
You're welcome!

Not the answer you are looking for?

Search for more explanations.

Ask your own question