anonymous
  • anonymous
what's the difference between differentiating
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
abb0t
  • abb0t
the difference? You mean the definition of a derivative. It involves limits.
anonymous
  • anonymous
\[\sin ^{2} x ,and, \sin 2x\]
abb0t
  • abb0t
\[\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
not limits, just differentiate just like f(x)=x^2 --> fprime(x)=2x
abb0t
  • abb0t
they both involve using the chain rule.
abb0t
  • abb0t
sin\(^2\)(x) is the same as [sin(x)]\(^2\) while sin(2x) is different.
dan815
  • dan815
|dw:1377752015899:dw|
abb0t
  • abb0t
sin(2x) is not sin(x)+sin(x).
dan815
  • dan815
|dw:1377752156756:dw|
anonymous
  • anonymous
is (sin x)^2 = sin^2 x^2? im confused
dan815
  • dan815
no
dan815
  • dan815
|dw:1377752615914:dw|
dan815
  • dan815
|dw:1377752637907:dw|
dan815
  • dan815
|dw:1377752650873:dw|
anonymous
  • anonymous
now i get it ty vm :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.