anonymous
  • anonymous
Expand (2+3x)^3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
just take whats inside the parentheses and cube it right?
anonymous
  • anonymous
OR do you take (2+3)(2+3)(2+3)
anonymous
  • anonymous
yah or do the shortcut thing .

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Direct expansion would be faster I think
anonymous
  • anonymous
so is the answer 8 +27x^3
anonymous
  • anonymous
Yeah, expand (2+3x)(2+3x)(2+3x)
anonymous
  • anonymous
wrong Archej1
austinL
  • austinL
\((2+3x)(2+3x)(2+3x)=(9x^2+12x+4)(2+3x)=...\)
anonymous
  • anonymous
He/she forgot the x,x^2 terms
anonymous
  • anonymous
What austinL said
austinL
  • austinL
\((ax^2+bx+c)(d+ex)=(ax^2)(d)+(bx)(d)+(bx)(d)+(ax^2)(ex)+(bx)(ex)+(c)(ex)\)
austinL
  • austinL
\(...+(c)(ex)\)
anonymous
  • anonymous
Here' s the Shortcut . Cube the First term +squared the first term multiply to the second term times 3 + squared the last term multiply to the first term times 3 + cubed the last term .
anonymous
  • anonymous
it is easy if you know that . :))))
austinL
  • austinL
If you do it my way, you are guaranteed a correct answer if you are solid in your algebra skills.

Looking for something else?

Not the answer you are looking for? Search for more explanations.