anonymous
  • anonymous
theta, given cos 2 theta =3/5 and theta terminates in quadrant I
Trigonometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
terenzreignz
  • terenzreignz
Half angle identities is all it takes ... \[\Large \cos\left(\frac \alpha 2\right)= \pm\sqrt{\frac{1+\cos(\alpha)}{2}}\]
anonymous
  • anonymous
use identities ti find the exact values of sine and cosine
terenzreignz
  • terenzreignz
Yes, well, here's a little something to get you started : \[\Large \cos(\theta) = \cos\left(\frac{2\theta}2\right)= \pm\sqrt{\frac{1+\color{red}{\cos(2\theta)}}2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

terenzreignz
  • terenzreignz
And... you are, in fact, GIVEN the value of \(\large \color{red}{\cos(2\theta)}\)
anonymous
  • anonymous
|dw:1377873875258:dw|
terenzreignz
  • terenzreignz
Yes, well, here's a little something to get you started : \[\Large \cos(\theta) = \cos\left(\frac{2\theta}2\right)= \pm\sqrt{\frac{1+\color{red}{\cos(2\theta)}}2}\]
anonymous
  • anonymous
yan ung ginamit ko e
terenzreignz
  • terenzreignz
Well, what did you get, then?
anonymous
  • anonymous
7/25
anonymous
  • anonymous
tama ba
terenzreignz
  • terenzreignz
Impossible. Plug in lang yan ohh... \[\Large \cos(\theta) = \cos\left(\frac{2\theta}2\right)= \pm\sqrt{\frac{1+\color{red}{\cos(2\theta)}}2}\]
anonymous
  • anonymous
din yan ung formula e nabinigay sa amin
terenzreignz
  • terenzreignz
Then...?
anonymous
  • anonymous
kng yan ang gagamitin masyadong kompikado
terenzreignz
  • terenzreignz
Teka, ito pala \[\large \cos(2\alpha) = 2\cos^2(\alpha) - 1\] Ito yun diba?
anonymous
  • anonymous
oo
anonymous
  • anonymous
kaya ang sagot 7/ 25 sa quadrant one kaya positive
terenzreignz
  • terenzreignz
Sandali ah... Tignan mo ito...\[\large \cos(2\alpha) = 2\cos^2(\alpha) - 1\] add 1 to both sides: \[\large \cos(2\alpha)\color{red}{+1} = 2\cos^2(\alpha) \] Divide both sides by 2. \[\Large \frac{1+\cos(2\alpha)}{2}= \cos^2(\alpha)\]
terenzreignz
  • terenzreignz
And then, square root both sides: \[\Large \pm \sqrt{\frac{1+\cos(2\alpha)}2}= \cos(\alpha)\]
terenzreignz
  • terenzreignz
In other words, yung formula na binigay ko sayo, pareho lang doon sa alam mo, ang pinagkaiba lang, ipapasok mo lang ang value ng \(\large \cos(2\theta)\) tapos kuha mo agad yung sagot...
terenzreignz
  • terenzreignz
Ngayon, \[\Large \cos(2\theta)=\frac35\] \[\Large \pm \sqrt{\frac{1+\frac35}2}= \cos(\alpha)\]
terenzreignz
  • terenzreignz
Solve.
anonymous
  • anonymous
|dw:1377875354273:dw|
terenzreignz
  • terenzreignz
Wrong...
anonymous
  • anonymous
7/25
terenzreignz
  • terenzreignz
Hindi ko alam kung paano mo nakukuha yan... pwede show steps?
anonymous
  • anonymous
cge salamat pag aaralan ko na lng bukas mag seself studies ako bukas antok na ako e salamat ha @terenzreignz
terenzreignz
  • terenzreignz
ako rin eh -.- Friday naman eh
anonymous
  • anonymous
oo cge cge sorry sa istorbo
terenzreignz
  • terenzreignz
may exam pa ako bukas... review pa ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.