nirmalnema
  • nirmalnema
why 0! and 1! both are equal to one
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
terenzreignz
  • terenzreignz
Because we have this identity :) \[\Large n! = n\cdot (n-1)!\] So, by that logic, we have: \[\Large 1! = 1(1-1)!\] \[\Large 1 = 1\cdot0!\]
terenzreignz
  • terenzreignz
Implying that 0! = 1
nirmalnema
  • nirmalnema
ok.... BUT HOW 0! is = to 1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

terenzreignz
  • terenzreignz
Okay... THIS \[\Large n!= n(n-1)!\] is true, right? Just take n = 1.
anonymous
  • anonymous
You pretty much just have to accept it. It simplifies very complex concepts
terenzreignz
  • terenzreignz
\[\Large 1! = 1\cdot(1-1)!\] Now, we know that 1! = 1 \[\Large 1 = 1\cdot 0!\] Now, solving for 0! does yield \[\Large 0! = 1\]
nirmalnema
  • nirmalnema
ok..thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.