anonymous
  • anonymous
Find all the values of x where the graph of f(x) = 2 x^3 - 39 x^2 + 180 x - 4 has a horizontal tangent line.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
find the 1st derivative... let it equal zero and then solve for x
anonymous
  • anonymous
f'(x)=6x^2+78x+180=0
anonymous
  • anonymous
I am solving for x now =, thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

campbell_st
  • campbell_st
thats a start now solve for x
campbell_st
  • campbell_st
except I think its \[f'(x) = 6x^2 - 78x + 180\]
anonymous
  • anonymous
oh yeah typo, thanks for catching that.
anonymous
  • anonymous
x=3 and x=10. Does that sound right?
campbell_st
  • campbell_st
yes thats fine... the curve has 2 stationary points (a max and a min) these points are where the tangent has a zero gradient
anonymous
  • anonymous
perfect thanks!
campbell_st
  • campbell_st
glad to help

Looking for something else?

Not the answer you are looking for? Search for more explanations.