anonymous
  • anonymous
when a quadratic function is in its factored form, the point where the graph intersects the x-axis can be identified without making any manipulation of the equation. True or False?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Ray10
  • Ray10
this is true :)
Ray10
  • Ray10
It works as; for example; \[x ^{2}+2x+1\] when factored gives: \[(x+1)^{2}\] correct? now looking solely at the (x+1) x+1=0 x=-1 The point where the graph intersects is -1 in this case it worked like this due to the easy numbers, but when any other quadratic equation is used, it still can be seen to work
anonymous
  • anonymous
:D thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Ray10
  • Ray10
You're welcome! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.