anonymous
  • anonymous
The equation 2x^2 + x -4 =0 has roots a and beta and the equation x^2 - 2x + p =0 has roots k(a)/beta and k(beta)/a. Find the value of k and of p.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
?
anonymous
  • anonymous
first find what a and beta are I think
phi
  • phi
2x^2 + x -4 =0 has roots a and beta means you can factor the quadratic into 2(x-a)(x-b)=0 expanding, you get 2(x^2 - a x - b x +ab) =0 or 2x^2 - 2(a+b) x + 2ab = 0 match corresponding terms to find: -2(a+b) = 1 or (a+b)= -1/2 2ab= -4 or ab = -2 now do the same thing for the 2nd polynomial x^2 - 2x + p =0 has roots k(a)/beta and k(beta)/a expand (x - k a/b)(x - k b/a) and match corresponding terms of x^2 - 2x + p =0 you will need to use the "trick" that (a+b)^2 = a^2 + b^2 +2ab from which you get a^2 + b^2 = (a+b)^2 - 2ab

Looking for something else?

Not the answer you are looking for? Search for more explanations.