fozia
  • fozia
What is the centroid of the region bounded by the curves y=x^2 and y=3−x^2?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
fozia
  • fozia
plz make it hurry or just tell me ans dont solve
anonymous
  • anonymous
i don' undertand but i can make dia grams for you,only rouph sketch.
fozia
  • fozia
ok hurry up please

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1377972298127:dw|
anonymous
  • anonymous
i guess but i am not sure. \[x=\frac{ 0+\sqrt{\frac{ 3 }{ 2 }}+0+\left( -\left( 1 \right) \right) \sqrt{\frac{ 3 }{2 }} }{4 }=0\] \[y=\frac{ 0+\frac{ 3 }{2 }+3+\frac{ 3 }{2 } }{4 }=\frac{ 3 }{ 2 }\]
anonymous
  • anonymous
My answer would be the point defined by the co-ordinates: \[x=0\] \[y=\left.\left.\frac{1}{\sqrt{54}−\frac{4(1.5)^{1.5}}{3}}\right(2\sqrt{30.375}−2(1.5^{1.5})\right)=\frac{11.0227−3.6742}{4.89898}=1.5\] So the point \(C(0,1.5)\). This is basically the same answer as @surjithayer but if you want, tomorrow ill prove it. Just that im not sure how much you want and if you do want it, it is a lot of integral work; I don't mind. Let me know :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.