anonymous
  • anonymous
A can in the shape of a right circular cylinder is required to have a volume of 700 cubic centimeters. The top and bottom are made up of a material that costs 6¢ per square centimeter, while the sides are made of material that costs 5¢ per square centimeter. Find a function that describes the total cost of the material as a function of the radius r of the cylinder.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[volume of cylinder=\pi r ^{2}h,\] find h \[curved area=2 \pi r *h and then cost\] \[Find area of \top and bottom= 2*\pi r ^{2} and then cost add the two and get the answer.\]
jdoe0001
  • jdoe0001
|dw:1377979824422:dw| so the 5cents Area, is really the sides of the can and the 6cents Area, is really just the "circles" atop and bottom \(\bf \textit{lateral area} = 2\pi \times radius \times height\\ \textit{circle's area} = \pi\times radius^2\\ f(x) = \textit{lateral area + circle's area + circle's area}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.