I have a question about the unit step function in a differential equation. Here is a link to the "quiz" this comes from: http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/unit-step-and-unit-impulse-response/MIT18_03SCF11_s25_3quizq.pdf I will post the result I obtained in a followup post where I can actually use LaTeX.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I have a question about the unit step function in a differential equation. Here is a link to the "quiz" this comes from: http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/unit-step-and-unit-impulse-response/MIT18_03SCF11_s25_3quizq.pdf I will post the result I obtained in a followup post where I can actually use LaTeX.

MIT 18.03SC Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

For v(t), I obtained: \[ce^{-kt}, t < 0; ce^{-kt}+\frac{1}{k}, t > 0.\] With the given initial condition, c = 0, and v(t) becomes: \[0, t < 0; \frac{1}{k}, t > 0.\] Then the derivative of that is delta(t), is it not? Then delta(0+) = 0. However, the soln given is delta(0+) = 1. http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/unit-step-and-unit-impulse-response/MIT18_03SCF11_s25_3quiza.pdf
It looks like where I went wrong was in assuming c to be the same for both parts of the piecewise solution. What I should have had for v(t) is:\[c_1e^{-kt}, t < 0; c_2e^{-kt}+\frac{1}{k}, t > 0.\]such that \[c_1 = 0; c_2 = \frac{-1}{k}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question