Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Waynex

  • one year ago

I have a question about the unit step function in a differential equation. Here is a link to the "quiz" this comes from: http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/unit-step-and-unit-impulse-response/MIT18_03SCF11_s25_3quizq.pdf I will post the result I obtained in a followup post where I can actually use LaTeX.

  • This Question is Closed
  1. Waynex
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    For v(t), I obtained: \[ce^{-kt}, t < 0; ce^{-kt}+\frac{1}{k}, t > 0.\] With the given initial condition, c = 0, and v(t) becomes: \[0, t < 0; \frac{1}{k}, t > 0.\] Then the derivative of that is delta(t), is it not? Then delta(0+) = 0. However, the soln given is delta(0+) = 1. http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/unit-step-and-unit-impulse-response/MIT18_03SCF11_s25_3quiza.pdf

  2. Waynex
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    It looks like where I went wrong was in assuming c to be the same for both parts of the piecewise solution. What I should have had for v(t) is:\[c_1e^{-kt}, t < 0; c_2e^{-kt}+\frac{1}{k}, t > 0.\]such that \[c_1 = 0; c_2 = \frac{-1}{k}\]

  3. Not the answer you are looking for?
    Search for more explanations.

    Search OpenStudy
    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.