anonymous
  • anonymous
A rock is thrown into a lake. The radius of the ripple formed by the rock grows at a rate of 60 cm/sec. Find the rate at which the area is growing 2 seconds after the rock hits the lake
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Nice question. So formula of the area with respect to time is\[A = \pi*(t*60) ^{2}\] where radius of the ripple is t*60. To find the growth rate you need to take its derivative. \[A \prime(2) = \pi*2*(t*60)*60\] at t=2. So the answer is\[\pi*2*(2*60)*60 = 14400\pi\]
anonymous
  • anonymous
Thank you so much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.