anonymous
  • anonymous
What is the limit as x approaches -3 of the function 3-lxl/ 3+x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Graph it and see what happens.
anonymous
  • anonymous
im not allowed to use a graph on this one
anonymous
  • anonymous
What are you allowed to use?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=%283-+absolute+value+of+x%29%2F+%283%2Bx%29 here it's reaching 0 but when i do it algebraically i get 1
anonymous
  • anonymous
I'm allowed to do it algebraically only lol @wio
anonymous
  • anonymous
Okay, if you want to do it algebraically, then you have to split the function up into two cases: When \(x\) is negative and when it is positive.
anonymous
  • anonymous
oh i got it i as looking at positive 3 thank you anyway
anonymous
  • anonymous
\[ f(x) =\begin{cases} \frac{3-x}{3+x} &x>0\\ \frac{3+x}{3+x} &x<0 \end{cases} \]We want to use that \(x<0\) case.
anonymous
  • anonymous
\[ \lim_{x\to -3}\frac{3-|x|}{3+x} = \lim_{x\to -3}\frac{3+x}{3+x} = \lim_{x\to -3}1 = 1 \]
anonymous
  • anonymous
No medal?

Looking for something else?

Not the answer you are looking for? Search for more explanations.