anonymous
  • anonymous
Use the method of Mathematical Induction to prove that, for every natural number n, the number n^2 + 5n + 6 is even.
Discrete Math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
first of all we will check for P(1) is it true or not?? for dat we will put n=1.luckily dat is true.....1+5+6 is divisible by 2 Now we will assume dat for P(K) this equation is true.......nd the equation is K^2+5K+ 6 ----------equation no.1 Now we are going to try to prove dat dis equation is true for P(K+1) for dat (K+1)^2+5(K+1)+6 K^2+2k+1+5K+5+6 K^2+5K+6 + 2K+6 Now as we know dat K^2+5K+6 is divisible by 2 nd 2(k+3) is also divisible by Therefore P(K+1) is satisfied Hence Proved Hope u get What m tryin to say

Looking for something else?

Not the answer you are looking for? Search for more explanations.