anonymous
  • anonymous
Find an explicit rule for the nth term of the sequence. 2, -8, 32, -128, ...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jdoe0001
  • jdoe0001
so, what do you think is the common ratio?
anonymous
  • anonymous
*-4
jdoe0001
  • jdoe0001
hmm, well, I guess that'd be the actual query.. so in this geometric sequence is just a multiplier btw \(\begin{array}{ccccc} 1^{st}&2^{nd}&3^{rd}&4^{th}\\ \hline\\ 2,& -8,& 32,& -128,& ....\\ \hline\\ 4^{1-1}&4^{2-1}&4^{3-1}&4^{4-1} \end{array}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
woops, should be ... -4 rather :(
jdoe0001
  • jdoe0001
\( \begin{array}{ccccc} 1^{st}&2^{nd}&3^{rd}&4^{th}\\ \hline\\ 2,& -8,& 32,& -128,& ....\\ \hline\\ -4^{1-1}&-4^{2-1}&-4^{3-1}&4^{-4-1} \end{array}\) so as you can see, the rule will be \(\bf \large -4^{n-1}\) , n= term ordinal position
jdoe0001
  • jdoe0001
shoot I stil have a typo... ohh, well anyhow hehe
anonymous
  • anonymous
so it would be 2*-4^n-1
anonymous
  • anonymous
lol that's okay xD I am understanding
jdoe0001
  • jdoe0001
hmm .... yeah... I sorta skipped the a1
anonymous
  • anonymous
thanks :)
jdoe0001
  • jdoe0001
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.