darkprince14
  • darkprince14
Prove:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
darkprince14
  • darkprince14
Let A, B, C, D be sets such that: if \[A \approx C\]and \[B \approx D\] then \[AXB \approx CXD\]
darkprince14
  • darkprince14
@zzr0ck3r
darkprince14
  • darkprince14
A X B is a cartesian product..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

darkprince14
  • darkprince14
@zzr0ck3r how can I prove that there is a bijective function h: A X B -> x X D? please help me on showing that they're both injective and surjective...
zzr0ck3r
  • zzr0ck3r
\[A\approx C\\\text{so there exists a one to one and onto function from A to C}\\\text{we will call it }f(A)\\B\approx D\\\text{so there exists a one to one and onto function from B to D}\\\text{we will call it }g(B)\\\text{define } h:(A\times B)\rightarrow(C \times D),\space h(a,b)=(f(a),g(b))\\\text{to show that h is onto and one to one}\\\text{assume }h(a_0,b_0)=h(a_1,b_1)\\\text{then by definition}\\(f(a_0),g(b_0))=(f(a_1),g(b_1))\\\text{since }f,g\space \text{ are both one to one, we have that }\\(a_0,b_0)=(a_1,b_1)\\\text{thus h is one to one}\\\text{let }(c,d)\in\space C\times D\\\text{since f and g are onto we have that }(c,d)=(f(a),g(b))\text{ for some } a,b \in A, B\\\text{thus }h\text{ is onto and one to one and }A\times B \approx \space C\times D\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.