DLS
  • DLS
Find the angle between the parabolas y^2=4ax and x^2=4by at their point of intersection except origin.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DLS
  • DLS
\[\LARGE \tan \theta= | \frac{m_1-m_2}{1+m_1m_2}|\]
DLS
  • DLS
\[\LARGE 2y y'=4a =>y' = \frac{2a}{y}\] that is m1
DLS
  • DLS
\[\LARGE 2x=4by' => y' = \frac{x}{2b}\] that is m2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DLS
  • DLS
now I have to substitute x and y by solving both the curves together to get the value of m1 m2 right? but im getting weird things while trying to do that..
DLS
  • DLS
If I'm proceeding correctly
DLS
  • DLS
@ganeshie8
ganeshie8
  • ganeshie8
looks good, keep going :)
DLS
  • DLS
getting double roots on x..
ganeshie8
  • ganeshie8
yes one must be 0 eh ? which you wanto discard anyways..
DLS
  • DLS
yes one is 0 but dunno abt other
ganeshie8
  • ganeshie8
y^2 = 4ax -----(1) x^2 = 4by------(2) from (2), y = x^2/4b plug this in (1) (x^2/4b)^2 = 4ax solve x
DLS
  • DLS
i did it wait hold on im getting weird stuff :/
ganeshie8
  • ganeshie8
(x^2/4b)^2 = 4ax x^4/16b^2 = 4ax x(x^3/16b^2-4a) = 0 x= 0, x^3/16b^2-4a = 0 x=0, x^3 = 64ab^2 x=0, x= \(4a^{1/3}b^{2/3}\)
DLS
  • DLS
that is the weird stuff I meant! :O
DLS
  • DLS
nvm
ganeshie8
  • ganeshie8
its not, its just constants a, b..
ganeshie8
  • ganeshie8
find y, yes i think this going to turn even more uglier... have fun ! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.