anonymous
  • anonymous
Find the volume for the regular pyramid. V = ? Find total area for the regular pyramid. T. A. =? https://media.glynlyon.com/g_geo_2012/8/groupi75.gif
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AkashdeepDeb
  • AkashdeepDeb
Common formula: 1/3 * area of hexagon * height.
anonymous
  • anonymous
Total area = total surface area?
AkashdeepDeb
  • AkashdeepDeb
Yes.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok so in diagram 6 is the length along the edge correct? so the total area is (1/2)(4*6)* 6 + area of hexagon
anonymous
  • anonymous
area of each triangle is 1/2 B*H and there are 6 sides
anonymous
  • anonymous
so total area is 72 + area of the hexagon base
anonymous
  • anonymous
the hexagon base made of 6 equilateral triangles of sides with 4 the area of the equilateral triangle is 1/2 b*h to find the height we find |dw:1378146256423:dw| this is a 30.60,90 triangle where the height is 2*sqrt(3)
anonymous
  • anonymous
so the area of the hexagon base is 6*(1/2*2*2*sqrt(3)) = 24sqrt(3) + 72 so total surface area is \[96\sqrt{3}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.