anonymous
  • anonymous
Find an explicit rule for the nth term of a geometric sequence where the second and fifth terms are -12 and 768, respectively.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Geometric sequences are like: a , a*r, a*r*r, a*r*r*r so on.. \[G _{5} = G _{2}*r ^{3}\] Then \[r ^{3} = G _{5}/G _{2} = 768/-12 = -64 \rightarrow r = -4\] \[-12 = G _{2} = r*G _{1} = r*a = -4*a \rightarrow a=3\] So our constant is 3 then nth term would be\[G _{n} = a*r ^{n} = 3*(-4)^{n}\]
anonymous
  • anonymous
Here are my choices: an = 3 • (-4)n + 1 an = 3 • 4n - 1 an = 3 • (-4)n - 1 an = 3 • 4n
anonymous
  • anonymous
Those answers are wrong :/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Those are my options...
anonymous
  • anonymous
Sorry, its my bad. the general term for geometric series is:\[G _{n} = a*r ^{n-1}\] Because the first term is not a*r but a. So power of r should be 0 for n=1. \[G _{n} = 3*(-4)^{n-1}\]
anonymous
  • anonymous
Thank You !

Looking for something else?

Not the answer you are looking for? Search for more explanations.