anonymous
  • anonymous
If a transformer steps down a 120-V source to 6.3 V and is connected to an 8 ohm loadWhat is the value of the impedence reflected back to the source?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
How do I figure out the value of impedence reflected back to the source?
kropot72
  • kropot72
The secondary current is given by \[I _{s}=\frac{6.3}{8}\] The turns ratio n is \[n=\frac{120}{6.3}\] The primary current is given by \[I _{p}=\frac{I _{s}}{n}=\frac{6.3}{8}\times \frac{6.3}{120}\] The impedance reflected back to the source is \[Z _{p}=\frac{V _{p}}{I _{p}}=\frac{120\times120\times8}{6.3^{2}}=8\times(\frac{12}{6.3})^{2}\] So we have the result that impedance reflected back to the source is \[Z _{p}=\frac{R _{s}}{n ^{2}}\]
kropot72
  • kropot72
\[Z _{p}=8\times(\frac{120}{6.3})^{2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so 2902 ohms?
kropot72
  • kropot72
Yes. I get 2902.5 ohms.
anonymous
  • anonymous
yeah i see how you got that thanks
kropot72
  • kropot72
You're welcome :)
kropot72
  • kropot72
So we have the result that impedance reflected back to the source is \[Z _{p}=R _{l} \times n ^{2}\] where \[R _{l}\ is\ secondary\ load\ resistance\] and \[n ^{2}\ is\ the\ primary/secondary\ turns\ ratio\ squared\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.