anonymous
  • anonymous
does any one knows how to calculate the minimum maximum of this partial function? f(x,y)=x^2+xy+2y^2+3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
you get partial derivative in terms of x, and partial derivative in terms of y.
anonymous
  • anonymous
|dw:1378263339284:dw|
anonymous
  • anonymous
|dw:1378263405209:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
that particular critical point (-4,8) is a saddle point.
anonymous
  • anonymous
and there are no other critical points in this domain.
anonymous
  • anonymous
thak you katherine, buy how did you get y=8
anonymous
  • anonymous
|dw:1378263657156:dw|
anonymous
  • anonymous
i got it, thank you so much
anonymous
  • anonymous
but the derivative of y is =x+4y
anonymous
  • anonymous
Yeah i failed :(
anonymous
  • anonymous
APply Hessian determinant, and it says fxxfyy-fxyfyx all at critical point.
anonymous
  • anonymous
http://www.math.brown.edu/~banchoff/howison/ma35labs-static-latest/21p1.html
anonymous
  • anonymous
ok

Looking for something else?

Not the answer you are looking for? Search for more explanations.