anonymous
  • anonymous
A 500 ohm resistor and a 1.2-mH inductor are connected in parallel to a 12-V,40-kHz source. How do I find the phase angle (theta)?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kropot72
  • kropot72
|dw:1378319285782:dw| \[\theta=\tan^{-1} \frac{I _{L}}{I _{R}}=\tan^{-1} \frac{\frac{V}{\omega L}}{\frac{V}{R}}=\tan^{-1} \frac{R}{\omega L}\]
anonymous
  • anonymous
Sorry i'm not understanding but they gave me a hint cos (theta)=Ir/It=Z/R...I know the numbers to fill in those spaces but i'm not sure what to do next.
kropot72
  • kropot72
Do you understand the vector diagram that I drew?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
no
kropot72
  • kropot72
Have you studied vector diagrams?
anonymous
  • anonymous
tried to understand them failed
kropot72
  • kropot72
Vector diagrams are very important to help understand AC circuits. If you plug the given values into the equation that I posted, you can find the solution to the question: \[\theta=\tan^{-1} \frac{R}{\omega L}=\tan^{-1} (\frac{500}{2\times \pi \times40\times 10^{3} \times1.2\times10^{-3}})\] \[\theta=\tan^{-1} (\frac{500}{96\times \pi})=\tan^{-1} 1.65786\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.