anonymous
  • anonymous
Use the compound interest formula A=P(1+R)^t and the given information to solve for R. A=$2600 P=$1800 T=7
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kropot72
  • kropot72
Plugging in the given values we get: \[2600=1800(1+r)^{7}\] Do you want help step by step to find r?
kropot72
  • kropot72
@MawyKay Are you there?
anonymous
  • anonymous
yes

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

kropot72
  • kropot72
Do you want to go step by step? The first step is to divide both sides of the equation by 1800. This step will isolate the expression with the exponent.
anonymous
  • anonymous
1.44=(1+r)^7 correct?
anonymous
  • anonymous
do you know what the next step is?
kropot72
  • kropot72
Good work! However take the number on the left hand side to four decimal places, giving 1.4444. Next take logs of both sides giving: \[\log_{} 1.4444=7\log_{} (1+r)\ .............(1)\] and now divide both sides of equation (1) by 7.
anonymous
  • anonymous
what does that look like? I'm confused.
kropot72
  • kropot72
\[\log_{} 1.4444=7\log_{} (1+r)\ ...........(1)\] and now divide both sides of equation (1) by 7, giving \[\frac{\log_{} 1.4444}{7}=\log_{} (1+r)\ .......(2)\] 0.0228125=log (1 + r) ..............(3) Therefore by the rules of logs \[10^{0.0228125}=(1+r)\] 1.053932 = 1 + r r = 0.053932 or 5.3932%

Looking for something else?

Not the answer you are looking for? Search for more explanations.