anonymous
  • anonymous
if sqrt(a-b) = (b/a)^(1-2x) then find the value of x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Solve for x: sqrt(a-b) = (b/a)^(1-2 x) Reverse the equality in sqrt(a-b) = (b/a)^(1-2 x) in order to isolate x to the left hand side. sqrt(a-b) = (b/a)^(1-2 x) is equivalent to (b/a)^(1-2 x) = sqrt(a-b): (b/a)^(1-2 x) = sqrt(a-b) Taking reciporicals of both sides lets us solve for x in the numerator. Take reciporicals of both sides: (a (b/a)^(2 x))/b = 1/sqrt(a-b) Divide both sides by a constant to simplify the equation. Divide both sides by a/b: (b/a)^(2 x) = b/(a sqrt(a-b)) Eliminate the exponential from the left hand side. Take the logarithm base b/a of both sides: 2 x = (log(b/(a sqrt(a-b))))/(log(b/a))+((2 i) pi n)/(log(b/a)) for n element Z Solve for x. Divide both sides by 2: Answer: | | x = (log(b/(a sqrt(a-b))))/(2 log(b/a))+(i pi n)/(log(b/a)) for n element Z
anonymous
  • anonymous
can it be shown in a simplified form so dat i can undrstnd? u might like to use "equation"(symbols) in order to clarify

Looking for something else?

Not the answer you are looking for? Search for more explanations.