anonymous
  • anonymous
What is the constant of variation?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
x y 3 30 9 10 15 6
anonymous
  • anonymous
Medal will be given!!
anonymous
  • anonymous
@thomaster @ash2326 @AccidentalAiChan @heidih @Spectrum @Madds96 @Koikkara @Neverh @Preetha

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@zepdrix
anonymous
  • anonymous
I would love to help you but I am awful at math! I'm sorry :/
anonymous
  • anonymous
Ok thanks
anonymous
  • anonymous
can u help @zepdrix
zepdrix
  • zepdrix
Sec thinking ^^
zepdrix
  • zepdrix
Based on the points they gave us, it looks like x and y will be `inversely proportional` to one another. A way we could write that is:\[\Large y=\frac{k}{x}\]Where \(\Large k\) is our constant of proportionality. We can simply plug in one of the coordinate pairs to solve for \(\Large k\).
anonymous
  • anonymous
can u give an example
zepdrix
  • zepdrix
Hmm, so it looks like one of the coordinates pairs they gave us is \(\Large (\color{royalblue}{x},\color{orangered}{y})=(\color{royalblue}{3},\color{orangered}{30})\) We want to plug this coordinate pair into our relationship.\[\Large \color{orangered}{y}=\frac{k}{\color{royalblue}{x}}\] Do the colors help see where to plug in? :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.