anonymous
  • anonymous
So when evaluating int 12cos^2(8x)dx I ended up with zero and that's not supposed to happen...can someone give me a hand?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
RadEn
  • RadEn
is this your question : |dw:1378485438274:dw|
anonymous
  • anonymous
yes
RadEn
  • RadEn
ok, first you can use the identity of trigono : cos^2 (a) = (1 + cos(2a))/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

RadEn
  • RadEn
so, cos^2 (8x) = (1 + cos(2(8x)))/2 = (1 + cos(16x))/2, agree ?
anonymous
  • anonymous
yeah I follow so far
RadEn
  • RadEn
then the integral above becomes : |dw:1378485728432:dw|
RadEn
  • RadEn
for integral of 6, we knowed it is 6x, then how about int 6 cos(16x) ?
RadEn
  • RadEn
formula : integral of cos(ax) dx = 1/a sin(ax)
anonymous
  • anonymous
I got it now, I just didn't see the trig identity. thank you :)
RadEn
  • RadEn
you're welcome sorry, i was lost conection, be late to reflay ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.