anonymous
  • anonymous
Which product represents the solution to the system?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
First do this :(this is not a system !) Look : How can u answer from it : 8.x=16 x=?
anonymous
  • anonymous
Now we should be have : (3,2)/(11,24)=? @ejune420:Understand ?!:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@ejune420:Is my answer fall?
anonymous
  • anonymous
all the answer choices are matrices
anonymous
  • anonymous
OK ! I understand it fall :( Excuse me :(
anonymous
  • anonymous
Did u get it the answer?
anonymous
  • anonymous
What the problem?
jdoe0001
  • jdoe0001
@ejune420 do you know how to get the inverse matrix for the 2x2 matrix there?
anonymous
  • anonymous
@jdoe0001 yeah I know how to get the inverse
jdoe0001
  • jdoe0001
ok well, then the "solution" for it will be \(\large \begin{array}{cccl} A& X & B\\ \begin{bmatrix} 1& 1\\ 2& 4 \end{bmatrix}& \begin{bmatrix} x \\ y\end{bmatrix}=& \begin{bmatrix}3\\2\end{bmatrix}\\ \textit{solution will be at }\\ A^{-1}\times B \end{array}\)
jdoe0001
  • jdoe0001
the result will be a 1x2, just like the "X" matrix and will equate the variables
anonymous
  • anonymous
thanks a bunch for the help, I'm gonna try to work it out now :)
jdoe0001
  • jdoe0001
yw
jdoe0001
  • jdoe0001
so the discriminant of the 2x2 "A" matrix is 2, so the inverse will be \(\large A= \begin{bmatrix} 1& 1\\ 2& 4 \end{bmatrix} A^{-1} = \cfrac{1}{2}\begin{bmatrix} 4& -1\\ -2& 1 \end{bmatrix}\)
anonymous
  • anonymous
I got it :)
jdoe0001
  • jdoe0001
determinant rather... is 2
jdoe0001
  • jdoe0001
ok :)
anonymous
  • anonymous
thanks so much!!:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.