anonymous
  • anonymous
At time t in seconds, a particle's distance s(t), in centimeters, from a point is given by s(t) = 4 + 3sin(t) What is the average velocity of the particle from t = π/3 to t = 7π/3?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The average velocity of a position function is the same as "the average rate of change of the position function." Over an interval \([a,b]\), the average rate of change of a function \(s(t)\) is given by \[\frac{s(b)-s(a)}{b-a}\]
anonymous
  • anonymous
So in this case, the avg rate of change is \[\frac{(4+\sin3\left(\frac{7\pi}{3}\right))-(4+\sin3\left(\frac{\pi}{3}\right))}{\frac{7\pi}{3}-\frac{\pi}{3}}\]
anonymous
  • anonymous
thanks! can you help me simplify that?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

campbell_st
  • campbell_st
I'll do the denominator its \[2 \pi\]
anonymous
  • anonymous
\(\sin3\left(\dfrac{7\pi}{3}\right)=\sin7\pi=0\). Do the same with the other trig term.
anonymous
  • anonymous
thank you!
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.