anonymous
  • anonymous
@ganeshie8
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
ganeshie8
  • ganeshie8
y = F(x) = 3x-3 y = 3x-3 thats the given function, ok
ganeshie8
  • ganeshie8
you familiar wid steps of finding inverse ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
its the opposite right?
ganeshie8
  • ganeshie8
hmm kindof yes :) y= 3x-3 you solve x first
anonymous
  • anonymous
isnt it 3?
ganeshie8
  • ganeshie8
i mean, solve x in terms of y y= 3x-3 add 3 both sides y= 3x-3 + 3 +3
ganeshie8
  • ganeshie8
that gives u, y+3 = 3x
ganeshie8
  • ganeshie8
next, divide 3 both sides ? y+3 = 3x /3 /3 \(\large \frac{(y+3)}{3} = x\)
ganeshie8
  • ganeshie8
so we have solved x completely eh ?
anonymous
  • anonymous
yes
ganeshie8
  • ganeshie8
Next, simply replace x and y \(\large \frac{(x+3)}{3} = y\) \(\large y = \frac{(x+3)}{3} \)
ganeshie8
  • ganeshie8
thats your inverse of y \(F^{-1}(y) =\large \frac{(x+3)}{3} \)
anonymous
  • anonymous
oooo ok thank you
ganeshie8
  • ganeshie8
np, just remember the two step process of finding inverse... inverses showup all the time... they never leave us :)
anonymous
  • anonymous
ok:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.