sgayton27
  • sgayton27
write the following in terms of sin(theta) only : cos(theta).... help ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
abb0t
  • abb0t
What terms?
sgayton27
  • sgayton27
cos(theta) in terms of sin(theta) only
sgayton27
  • sgayton27
here is the question
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

abb0t
  • abb0t
I think that you are using the fact that sin\(^2\)(x)+cos\(^2\)(x)=1 which is merely algebra. Subtract and root both sides to get sine alone.
abb0t
  • abb0t
So, kind of like the pythagorean theorem: x\(^2\)+y\(^2\) = z\(^2\), solve for x?
sgayton27
  • sgayton27
I dont know because in my book the first clue is that cos(x)=sin(x)/tan(x).. this is a trig class
abb0t
  • abb0t
tangent = \(\large \frac{sin}{cos}\)
abb0t
  • abb0t
So you have: \(\huge\frac{sin(x)}{\frac{sin(x)}{cos(x)}}\)
sgayton27
  • sgayton27
how can i simplify that to sin(x) terms only
sgayton27
  • sgayton27
cos(x)= +/- sqrt (1-sin^2(x))
abb0t
  • abb0t
You know in a fraction: \(\frac{a}{\frac{b}{c}} = \frac{ac}{b}\)
sgayton27
  • sgayton27
that right! thank you so much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.