Lukecrayonz
  • Lukecrayonz
Derivs :(
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Lukecrayonz
  • Lukecrayonz
http://gyazo.com/da79c8768e1e4ff28a282298e1a5d458
anonymous
  • anonymous
For the function to be differentiable at the point x=1 two things have to be true: the two formulas have to produce the same value at x=1 and they must have the same slope at x=1. Begin by finding the value at x=1. Plug 1 into the formula 3x^2 and you get 3. So the coordinates of the point where these formulas join up are (1,3). Now you need the slope. Find the derivative of 3x^2 and evaluate it at x=1. That gives you m, so you have the slope of the line and the coordinates of a point on the line. Plug those into the point-slope formula for the equation of a line. Set x=0 to find the y-intercept and you'll have b.

Looking for something else?

Not the answer you are looking for? Search for more explanations.