anonymous
  • anonymous
solve 1/4^(x+1) = 8x?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathstudent55
  • mathstudent55
Is this it? \( \left( \dfrac{1}{4} \right) ^{x + 1} = 8x\)
anonymous
  • anonymous
yesss
anonymous
  • anonymous
I don't understand...:(

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathstudent55
  • mathstudent55
Is the right side correct. It's 8x, not 8^x?
anonymous
  • anonymous
whoops its 8^x, sorry
mathstudent55
  • mathstudent55
That's better.
mathstudent55
  • mathstudent55
\( \left( \dfrac{1}{4} \right)^{x + 1} = 8^x\) Rewrite the left side as a power of 2. Rewrite the right side as a power of 2.
anonymous
  • anonymous
how do I do that?
mathstudent55
  • mathstudent55
\( \left( \dfrac{1}{4} \right) ^ {x + 1} = 8^x\) Start like this. Now multiply the exponents together on each side. \( \left( 2^{-2} \right) ^ {x + 1} = (2^3)^x\)
anonymous
  • anonymous
x=-2/5?
mathstudent55
  • mathstudent55
\(\left( 2^{-2} \right) ^ {x + 1} = (2^3)^x\) \( 2^{-2x -2} = 2^{3x} \) \( -2x -2 = 3x \) \( -5x = 2 \) \(x = -\dfrac{2}{5} \) You are correct.
anonymous
  • anonymous
yes! thanks :D
mathstudent55
  • mathstudent55
wlcm

Looking for something else?

Not the answer you are looking for? Search for more explanations.