anonymous
  • anonymous
What are matrix A, matrix X, and matrix C for the system of linear equations -10x-3y=-2 and 4x+5y=16? How do I even begin to figure this out?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Given some system of equations \[\begin{cases}ax+by=c\\ dx+ey=f\end{cases}\] You can write it as a matrix equation \(AX=C\), where \(A\) is the matrix of coefficients, \(X\) is the coefficient of variables, and \(C\) is a constant matrix: \[A=\begin{bmatrix}a&b\\d&e\end{bmatrix}\\ X=\begin{bmatrix}x\\y\end{bmatrix}\\ C=\begin{bmatrix}c\\f\end{bmatrix}\]
anonymous
  • anonymous
@SithsAndGiggles thank you! so X would be \[X= \left[\begin{matrix}-10 & -3 \\ 4 & 5\end{matrix}\right]\] C would be \[C= \left(\begin{matrix}-2 \\ 16\end{matrix}\right)\] and what would X be since there is two x's and y's?
anonymous
  • anonymous
\[\color{red}{A}= \left[\begin{matrix}-10 & -3 \\ 4 & 5\end{matrix}\right]\] but yeah that's right.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yeah thats what I meant lol thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.