Lukecrayonz
  • Lukecrayonz
Derivs. @SithsAndGiggles :-)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Lukecrayonz
  • Lukecrayonz
http://gyazo.com/5942768e038fbb423b851ba12d476168
Lukecrayonz
  • Lukecrayonz
I know this is simple I just forget it ;P
anonymous
  • anonymous
It's the same as before. Apply the avg rate of change formula.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
........yeh simple
Lukecrayonz
  • Lukecrayonz
f(x)=sqrt(2x+6)
Lukecrayonz
  • Lukecrayonz
Find simplified quotient
Lukecrayonz
  • Lukecrayonz
\[(\sqrt(2(x+h)+6)-\sqrt(2x+6))/h\]
Lukecrayonz
  • Lukecrayonz
Is that correct?:O
anonymous
  • anonymous
Yes. Do you have to rewrite that or something?
Lukecrayonz
  • Lukecrayonz
I need to simplify it :P
Lukecrayonz
  • Lukecrayonz
So then sqrt(2x+2h+6)-sqrt(2x+6) all over h
anonymous
  • anonymous
Well the most simplification I can think of is to get rid of the square roots in the numerator, but that's just going to leave you with radicals in the denominator.
anonymous
  • anonymous
\[\frac{\sqrt{2(x+h)+6}-\sqrt{2x+6}}{h}\cdot\frac{\sqrt{2(x+h)+6}+\sqrt{2x+6}}{\sqrt{2(x+h)+6}+\sqrt{2x+6}}\] \[=\frac{(2(x+h)+6)-(2x+6)}{h\left(\sqrt{2(x+h)+6}+\sqrt{2x+6}\right)}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.