• anonymous
Suppose that f(x) denotes a function defined for all real numbers. Each of the statements below us true "sometimes". Give an example for each function to prove it holds a true and false function.
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
\[\lim_{x \rightarrow -7} f(x) =a\] then \[\lim_{x \rightarrow -7}\frac{ 1 }{ f(x) } = \frac{ 1 }{ a }\] You may choose any value of 'a' that you wiah for your examples.
  • anonymous
  • DebbieG
Well, starting with the false example... I think if you pick a function so that the first limit is =0 (think simple, lol... a linear function with f(-7)=0 will do, so can you think of how to "cook up" that function?)...... then the second limit won't even exist, much less be =1/a, because the function will "blow up" to +- infinity, coming from either side of x=-7. To make it true.... the simplest thing would be a constant function, dontcha think? :) that is, if f(x) is just a horizontal line y=a for any non-zero value of a, then I believe it will be true. Although that's a reallllly boring example, lol. Really, any simple function will do if it is continuous and non-zero at x=-7. So a quadratic.... something like.... f(x)=(x+8)^2, is a "snazzier" example than the constant function. But either will do. :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.