anonymous
  • anonymous
Suppose that, from measurements in a microscope, you determine that a certain bacterium covers an area of 1.50 μm2. Convert this to square meters.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Welcome to OpenStudy! Message me if you have any questions OpenStudy related!
anonymous
  • anonymous
Convert 5.23×10−6kg/mm3 to kg/m3
blurbendy
  • blurbendy
To your original question Convert \(1.50 \mu m^2\) to \(m^2\) I do unit conversion by fractions. Set up an identity relating the two units: \(1 \mu m= 10^{-6} m\) Divide both sides by the unit you want to get rid of: \(\dfrac{10^{-6}m}{1 \mu m} = 1\) Now we can use that fraction to convert any micrometers we see into meters by multiplying. The value of the fraction is 1, so we don't affect the equation's truth at all, just the units. As we are converting square micrometers to square meters, we will have to multiply by the conversion fraction twice. The units will cancel properly if we set up the equation correctly, and there won't be any question about whether we divided when we should have multiplied, or vice versa. \[1.50 \mu m^2 * \frac{10^{-6}m} {1 \mu m}*\frac{10^{-6}m} {1 \mu m} \]Observe that the units cancel the way we want:\[1.50 \cancel{\mu m^2} * \frac{10^{-6}m} {1 \cancel{\mu m}}*\frac{10^{-6}m} {1 \cancel{\mu m}} = 1.50 * 10^{-6} * 10^{-6} m^2\] Stolen from my friend @whpalmer4

Looking for something else?

Not the answer you are looking for? Search for more explanations.