anonymous
  • anonymous
Choose the correct simplification of ....
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{ x^{9}y^{14} }{ x^{2}y^{9} }\]
anonymous
  • anonymous
A. \[x^{11}y^{23}\] B. \[x^{12}y^{12}\] C. \[x^{7}y^{5}\] D. \[x^{18}y^{16}\]
anonymous
  • anonymous
For this I got A :) am I correct Anyone?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Or it could be C
blurbendy
  • blurbendy
Here, you're just going to want to subtract the exponents top from bottom. So that gives you C
anonymous
  • anonymous
Oh so i dont add
anonymous
  • anonymous
You add when you multiply.
anonymous
  • anonymous
\(x^2 \times x^4 = x^{2+4} = x^8\) \(x^6 \div x^3 = x^{6-3} = x^3\)
blurbendy
  • blurbendy
good example @gypsy1274
anonymous
  • anonymous
so that works for every simplification
anonymous
  • anonymous
That works anytime you multiply or divide two terms with the same base.
anonymous
  • anonymous
Okay thank youu

Looking for something else?

Not the answer you are looking for? Search for more explanations.