anonymous
  • anonymous
how to find the equation of a line perpendicular to Y=3x^2-4
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
It will change depending on the point to which you want it to be perpendicular.
anonymous
  • anonymous
Suppose you want it to be perpendicular at \((x_0,y(x_0))\)
anonymous
  • anonymous
oh yeah, at the point (2,1) sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Find the instantaneous with the derivative. To make it perpendicular, you invert it and multiply it by negative one.
anonymous
  • anonymous
So the slope is: \[ m = -\frac{1}{y'(2)} \]
anonymous
  • anonymous
Using slope point formula: \[ (y-y_0) = m(x-x_0) \]In this case we have: \[ y-1 = \frac{1}{f'(2)}(x-2) \]
anonymous
  • anonymous
I changed to \(f\) because in this case \(y\) is the perpendicular line, while I want \(f\) to represent our original curve.
anonymous
  • anonymous
Perfect. Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.