anonymous
  • anonymous
mirror image of (h,k) about a line ax+by+c=0.can i have the direct formula??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ganeshie8
  • ganeshie8
interesting, lets try :) normally we find the perpendicular distance from point to line, and go the same distance the other side
ganeshie8
  • ganeshie8
|dw:1378788585508:dw|
ganeshie8
  • ganeshie8
simple case, line x=m, point (h, k)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
|dw:1378788696027:dw|
ganeshie8
  • ganeshie8
is it possible to come up wid an equation, for the whole process ? hmm
ganeshie8
  • ganeshie8
distance between point and line = |h-m| so, it the mirror must be |h-m| distance away from the line, the other side
ganeshie8
  • ganeshie8
thats easy, the mirror of (h, k), reflected over line x=m should be (m + m-h, k)
ganeshie8
  • ganeshie8
you may try finding the mirror image wid line ax+by+c=0, by using the distance between line and point formula. it wud get messy, give it a try !

Looking for something else?

Not the answer you are looking for? Search for more explanations.