anonymous
  • anonymous
]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zpupster
  • zpupster
To convert from one to the other, you need to solve the triangle: Polar Coordinates you mark a point by how far away, and what angle it is:
zpupster
  • zpupster
|dw:1378811674308:dw|
zpupster
  • zpupster
so first you solve for r using Pythagorean theorem and then solve tan opp/adj and oyu will get your polar coordinates (hypotenuse,degrees)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so -1,0 gives 1, 2pi?
zpupster
  • zpupster
no
zpupster
  • zpupster
\[r=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}\]
zpupster
  • zpupster
and tan theta = opp/adj
anonymous
  • anonymous
you can also solve by this method. \[put -1=rcos \theta,0=r \sin \theta \] square and add, \[r ^{2}\left( \cos ^{2}\theta+\sin ^{2}\theta \right)=\left( -1 \right)^{2}+\left( 0 \right)^{2}=1,r=1\] \[-1=1\cos \theta ,\cos \theta=-1=\cos \pi,\theta=\pi \] \[\left( -1,0 \right)=\left( 1\cos \pi,1\sin \pi \right)\]
anonymous
  • anonymous
\[\left( -1,0 \right) \in polar coordinates is \left( 1,\pi \right)\]
anonymous
  • anonymous
\[it is not (1,2 \pi) \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.