integrate cosx/sqrt(1+cosx)dx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

integrate cosx/sqrt(1+cosx)dx

MIT 18.01 Single Variable Calculus (OCW)
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Take the integral: integral (cos(x))/sqrt(cos(x)+1) dx For the integrand (cos(x))/sqrt(1+cos(x)), substitute u = 1+cos(x) and du = -sin(x) dx: = integral (u-1)/(sqrt(2-u) u) du For the integrand (-1+u)/(sqrt(2-u) u), substitute s = sqrt(2-u) and ds = -1/(2 sqrt(2-u)) du: = integral -(2 (1-s^2))/(2-s^2) ds Factor out constants: = -2 integral (1-s^2)/(2-s^2) ds For the integrand (1-s^2)/(2-s^2), cancel common terms in the numerator and denominator: = -2 integral (s^2-1)/(s^2-2) ds For the integrand (-1+s^2)/(-2+s^2), do long division: = -2 integral (1/(s^2-2)+1) ds Integrate the sum term by term: = -2 integral 1/(s^2-2) ds-2 integral 1 ds Factor -2 from the denominator: = -2 integral -1/(2 (1-s^2/2)) ds-2 integral 1 ds Factor out constants: = integral 1/(1-s^2/2) ds-2 integral 1 ds For the integrand 1/(1-s^2/2), substitute p = s/sqrt(2) and dp = 1/sqrt(2) ds: = sqrt(2) integral 1/(1-p^2) dp-2 integral 1 ds The integral of 1/(1-p^2) is tanh^(-1)(p): = sqrt(2) tanh^(-1)(p)-2 integral 1 ds The integral of 1 is s: = sqrt(2) tanh^(-1)(p)-2 s+constant Substitute back for p = s/sqrt(2): = sqrt(2) tanh^(-1)(s/sqrt(2))-2 s+constant Substitute back for s = sqrt(2-u): = sqrt(2) tanh^(-1)(sqrt(1-u/2))-2 sqrt(2-u)+constant Substitute back for u = 1+cos(x): = sqrt(2) tanh^(-1)(sqrt(sin^2(x/2)))-2 sqrt(1-cos(x))+constant Factor the answer a different way: = sqrt(1-cos(x)) (csc(x/2) tanh^(-1)(sin(x/2))-2)+constant Which is equivalent for restricted x values to: Answer: | | = (2 cos(x/2) (2 sin(x/2)+log(cos(x/4)-sin(x/4))-log(sin(x/4)+cos(x/4))))/sqrt(cos(x)+1)+constant
ybarrap (u-1)/(sqrt(2-u) u) du how do you get (sqrt(2-u)
\[\frac{ 1 }{ \sqrt{2} } \int\limits_{}^{}\frac{ cosx }{ \sqrt{\frac{ 1+cosx }{ 2 }} }dx\] \[1/\sqrt{2}\int\limits_{}^{}\frac{ \cos(x) }{ \cos(x/2) }dx \rightarrow 1/\sqrt{2} \int\limits_{}^{}\frac{ 2\cos^2(x/2)-1 }{ \cos(x/2) }dx\] \[1/\sqrt{2}\int\limits_{}^{}2\cos(x/2)-\sec(x/2)dx\] From here I think you can handle the rest..

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question