Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

v dot ( v cross w ) = 0 I think it is true

MIT 18.02 Multivariable Calculus, Fall 2007
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
YES you are correct
Yes, you are right, because cross product vector is always perpendicular to both of the vectors we are multiplying, thus it's perpendicular to vector v. Dot product has in itself the cosine of the angle between two given vectors, and we know that the cosine of 90 is 0.
I think this concept can be applied to div(curl F) = 0 as well

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

It's also true because: a dot (b cross c) = (a cross b) dot c
Btw. If you didn't know: a dot (b cross c) = c dot (a cross b) = b dot (c cross a) also and from the fact that dot-product is commutative and the second permutation we get the fact that one can exchange the dot and cross in triple product. These are very easy to prove using the matrix presentation of the triple product.

Not the answer you are looking for?

Search for more explanations.

Ask your own question