anonymous
  • anonymous
a machine can toss a golf ball a distance of 120 m on a level playing field when the machine is set to an angle of 30 degrees. How far can the machine toss the ball when it is set to an angle of 45 degrees.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1379214266422:dw|
anonymous
  • anonymous
ok so where do i go from there
anonymous
  • anonymous
\[R=\frac{u^2 \sin(2 \theta)}{g}\] \[\theta = 30 degrees\]R=120m \[120=\frac{u^2 \sin(2 *30)}{10}\] find u.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
then find R for 45 degrees with this u.
anonymous
  • anonymous
ok, so is it 170 m, 98 m , 140 m , 85 m or 150 m? trying to check my answer
anonymous
  • anonymous
what u you got?
anonymous
  • anonymous
98 m?
anonymous
  • anonymous
\[u^2 = \frac{120*10}{\sin 60}\] \[u^2 = 800\sqrt{3}\] now theta = 45 \[R=\frac{u^2 \sin(2*45)}{10}\] substitute value of u^2. \[R=\frac{800 \sqrt{3} \sin(2*45)}{10}\]
anonymous
  • anonymous
\[R=80\sqrt{3}\]
anonymous
  • anonymous
man i missed that up, so with sig figs.... 140 m?

Looking for something else?

Not the answer you are looking for? Search for more explanations.