Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

theEric Group Title

Hello! I'm working on a finance-related problem, and I'm not sure that I'm solving the ODE well! Here's the prompt: A certain college graduate borrows $8,000 to buy a car. The lender charges interest at an annual rate of \(10\%\). Assuming that interst is compounded \(\sf continuously\), and that the borrower makes payments \(\sf continuously\) at a constant annual rate \(k\), determine the payment rate \(k\) that is required to pay off the loan in \(3\) years. Also, determine how much interest is paid during the \(3\)-year period. The answers: \(k=$3086.64\ /\text{year}\); \($1259.92\)

  • one year ago
  • one year ago

  • This Question is Closed
  1. theEric Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Here's what I did. Let \(D\) be the debt in dollars. Note that \(\dfrac{dD}{dt}=D'=.10D-k\implies D'-.10D=-k\). I'll use \(C\) variables as arbitrary constants. Then \(\Large {D=e^{-\int -.10dt}\int (-k)e^{\int -.10dt}dt\\~\\~\\ =-k\ e^{\int .10dt}\int e^{-\int .10dt}dt\\~\\~\\ =-k\ e^{.10t+C_1}\int e^{-.10t+C_2}dt\\~\\~\\ =-k\ e^{.10t+C_1}(-10 e^{-.10t+C_2}+C_3)\\~\\~\\ =-k\ e^{.10t}e^{C_1}(-10 e^{-.10t}e^{C_2}+C_3)\\~\\~\\ =-k\ e^{.10t}C_4(-10 e^{-.10t}C_5+C_3)\\~\\~\\ =-k\ e^{.10t}C_4(-10) e^{-.10t}C_5-k\ e^{.10t}C_4C_3\\~\\~\\ =-k\ e^0C_4(-10) C_5-k\ e^{.10t}C_4C_3\\~\\~\\ =10k\ C_6-k\ e^{.10t}C_7\\~\\~\\ =k\ C_8-k\ e^{.10t}C_7}\)

    • one year ago
  2. theEric Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Where might I be making a mistake? This doesn't look right... I see that I can simplify: \(\Large\qquad\qquad\qquad = k(C_8-e^{0.10t}C_7)\)

    • one year ago
  3. SithsAndGiggles Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    I forget the reason behind it, but I'm pretty sure you just ignore the constant of integration when you find the integrating factor. I end up with \[D(t)=10k+Ce^{-1/10~t}\]

    • one year ago
  4. theEric Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Okay! I solved on Wolfram Alpha and I think I got something like that! I have to check! But thank you! I was just using a formula that was derived with the integrating factor, I think. I don't quite understand it! :P

    • one year ago
  5. SithsAndGiggles Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    You're welcome! And by the way, the reason (according to wikipedia) is that we only need *a* solution, not the general solution, to the integral.

    • one year ago
  6. theEric Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Hmm! Thanks! I'll probably look into this tomorrow when I'm less tired! :) Thank you very much, @SithsAndGiggles !

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.