Consider a set X = [2, 3, 4) and the Relation defined on X by. R = {(2, 2) (2, 3) (3, 3) (3, 4) (2, 4) (4, 4)}. Find whether R is : i) Reflexive ii) Symmetric iii) Transitive Also justify your answer.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Consider a set X = [2, 3, 4) and the Relation defined on X by. R = {(2, 2) (2, 3) (3, 3) (3, 4) (2, 4) (4, 4)}. Find whether R is : i) Reflexive ii) Symmetric iii) Transitive Also justify your answer.

Discrete Math
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Reflexive means: \[ \forall x \quad xRx \]
It's reflexive since it contains \((2,2)\), \((3,3)\), and \((4,4)\).
Symmetric means: \[ \forall x\quad xRy\iff yRx \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

It's not symmetric because it contains \((2,3)\) but not \((3,2)\).
@sunainagupta Are you following?
Transitive means: \[ \forall x\quad xRy\wedge yRz\implies xRz \]
Let me rehash, since my notation was strange before. Reflexive \[ \forall x \quad (x,x)\in \mathcal{R} \] Symmetric \[ \forall x,y \quad (x,y)\in \mathcal{R} \iff (y,x)\in \mathcal{R} \] Transitive \[ \forall x,y,z \quad (x,y)\in \mathcal{R} \wedge (y,z)\in \mathcal{R} \implies (x,z)\in \mathcal{R} \]
thank you!
A survey among the students of college. 60 Study Hindi, 40 study Spanish, and 45 study Japanese, Further 20 study Hindi and Spanish, 25 study Hindi and Japanese, 15 study Spanish and Japanese and 8 study all the languages. Find the followings: i) How many students are studying at least one language? ii) How many students are studying only Hindi ? iii) How many students are studying only Japanese ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question