Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

mameadows Group Title

you roll 2 dice. what is the probability that at least one will be a four?

  • 11 months ago
  • 11 months ago

  • This Question is Closed
  1. apihliah Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    11/36? just thinking

    • 11 months ago
  2. kropot72 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    The sample space has 36 possible combinations of numbers. These can be set out in column form as follows: 6,6 5,6 4,6 3,6 2,6 1,6 6,5 5,5 4,5 3,5 2,5 1,5 6,4 5,4 4,4 3,4 2,4 1,4 6,3 5,3 4,3 3,3 2,3 1,3 6,2 5,2 4,2 3,2 2,2 1,2 6,1 5,1 4,1 3,1 2,1 1,1 You need to count the number of outcomes where at least one die shows a four and divide the result by 36 to find the required probability.

    • 11 months ago
  3. kropot72 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    @mameadows Have you found the number of combinations where at least one die shows a four?

    • 11 months ago
  4. mameadows Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    well, I see from your answer that there are 11 possible combinations, but is there a formula that I can use to make this quicker to solve? so I don't always have to draw out all of the possible outcomes? thank you by the way... your answer really helped!

    • 11 months ago
  5. kropot72 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    No doubt there is an algebraic way to establish the number of combinations containing at least one four. However I think that making a table is the clearest way to solve this question.

    • 11 months ago
  6. mameadows Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    thanks :)

    • 11 months ago
  7. kropot72 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    Here is another way to solve this question: Let event A be getting 4 on die #1 and 1, 2, 3, 5 or 6 on die #2. The probability of getting 4 on die #1 is 1/6 and the probability of getting 1, 2, 3, 5 or 6 on die #2 is 5/6. Therefore the probability of event A is \[P(A)=\frac{1}{6} \times \frac{5}{6}=\frac{5}{36}\] Let event B be getting 4 on die #2 and 1, 2, 3, 5 or 6 on die #1. The probability of getting 4 on die #2 is 1/6 and the probability of getting 1, 2, 3, 5 or 6 on die #1 is 5/6. Therefore the probability of event B is \[P(B)=\frac{5}{6} \times \frac{1}{6}=\frac{5}{36}\] Let event C be getting 4 on die #1 and 4 on die #2. The probability of event C is \[P(C)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}\] Events A, B and C are mutually exclusive. Therefore the probability of getting at least one four is given by their sum, as follows: \[P(at\ least\ one\ 4)=\frac{5}{36}+\frac{5}{36}+\frac{1}{36}=\frac{11}{36}\]

    • 11 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.