anonymous
  • anonymous
you roll 2 dice. what is the probability that at least one will be a four?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
11/36? just thinking
kropot72
  • kropot72
The sample space has 36 possible combinations of numbers. These can be set out in column form as follows: 6,6 5,6 4,6 3,6 2,6 1,6 6,5 5,5 4,5 3,5 2,5 1,5 6,4 5,4 4,4 3,4 2,4 1,4 6,3 5,3 4,3 3,3 2,3 1,3 6,2 5,2 4,2 3,2 2,2 1,2 6,1 5,1 4,1 3,1 2,1 1,1 You need to count the number of outcomes where at least one die shows a four and divide the result by 36 to find the required probability.
kropot72
  • kropot72
@mameadows Have you found the number of combinations where at least one die shows a four?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
well, I see from your answer that there are 11 possible combinations, but is there a formula that I can use to make this quicker to solve? so I don't always have to draw out all of the possible outcomes? thank you by the way... your answer really helped!
kropot72
  • kropot72
No doubt there is an algebraic way to establish the number of combinations containing at least one four. However I think that making a table is the clearest way to solve this question.
anonymous
  • anonymous
thanks :)
kropot72
  • kropot72
Here is another way to solve this question: Let event A be getting 4 on die #1 and 1, 2, 3, 5 or 6 on die #2. The probability of getting 4 on die #1 is 1/6 and the probability of getting 1, 2, 3, 5 or 6 on die #2 is 5/6. Therefore the probability of event A is \[P(A)=\frac{1}{6} \times \frac{5}{6}=\frac{5}{36}\] Let event B be getting 4 on die #2 and 1, 2, 3, 5 or 6 on die #1. The probability of getting 4 on die #2 is 1/6 and the probability of getting 1, 2, 3, 5 or 6 on die #1 is 5/6. Therefore the probability of event B is \[P(B)=\frac{5}{6} \times \frac{1}{6}=\frac{5}{36}\] Let event C be getting 4 on die #1 and 4 on die #2. The probability of event C is \[P(C)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}\] Events A, B and C are mutually exclusive. Therefore the probability of getting at least one four is given by their sum, as follows: \[P(at\ least\ one\ 4)=\frac{5}{36}+\frac{5}{36}+\frac{1}{36}=\frac{11}{36}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.