anonymous
  • anonymous
Let \(G=\left{z\in\mathbb{C}|z^n=1\text{ for some }n\in\mathbb{Z}^+\right}\). Prove that for any fixed integer \(k > 1\) the map from G to itself defined by \(z \mapsto z^k\) is a surjective homomorphism but not an isomorphism. I can show that it's a homomorphism, but am a bit stuck after that
Meta-math
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Let \(G=\{z \in \mathbb{C} | z^n=1\text{ for some }n \in \mathbb{Z}^+ \}\), no idea why it doesn't show up in the question itself
sirm3d
  • sirm3d
isomorphism requires both injective and surjective homomorphism
anonymous
  • anonymous
I know that but I wouldn't have a clue how to prove this is not injective :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

John_ES
  • John_ES
May be, you should consider two elements from the image space, and then try to find a pair of values from the domain space that have this image. For example, considering z=i^k, for some k's.
sirm3d
  • sirm3d
try prime and non-prime values of k.
anonymous
  • anonymous
Showing that G is a group: let \(z_1, z_2 \in G\), then \(z_1^m=1,z_2^n=1\text{ for some }n\in\mathbb{Z}^+\) and \((z_1z_2)^{mn}=1\) so G is closed under multiplication, \((z_1^{-1})^m=1\) and also closed under inverses so G is a group. Homomorphism: was quite easy since it follows from commutativity of (\(\mathbb{C}\), *) let \(z_1, z_2\in G\), \(k > 1\) then \(\varphi(z_1z_2)=z_1^kz_2^k=\varphi(z_1)\varphi(z_2)\) Showing that it's surjective: To show that it's surjective we need to show that for every \(z \in G\), \(\varphi(w)=z\) for some \(w \in G\), let \(w = \sqrt[k]{z}\), \(\varphi(\sqrt[k]{z})=(\sqrt[k]{z})^k=z\), so all we need to show is that \(w \in G\), so \(w^n = 1\) for some positive integer, let this integer be kn where n is the order of z, then it's obvious \(w^{kn} = 1\) and since kn is also a positive integer, \(w \in G\). Now to show it's not injective every complex number has k k-th roots, we know k > 1, so for every \(z \in G\), there are at least 2 k-th roots, \(r_1 \text{ and } r_2\), but \(\varphi(r_1)=\varphi(r_2)\) so \(\varphi\) is not injective and thus not an isomorphism.
anonymous
  • anonymous
Completely forgot I could also take roots of numbers :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.