Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Meepi

Let \(G=\left{z\in\mathbb{C}|z^n=1\text{ for some }n\in\mathbb{Z}^+\right}\). Prove that for any fixed integer \(k > 1\) the map from G to itself defined by \(z \mapsto z^k\) is a surjective homomorphism but not an isomorphism. I can show that it's a homomorphism, but am a bit stuck after that

  • 6 months ago
  • 6 months ago

  • This Question is Closed
  1. Meepi
    Best Response
    You've already chosen the best response.
    Medals 0

    Let \(G=\{z \in \mathbb{C} | z^n=1\text{ for some }n \in \mathbb{Z}^+ \}\), no idea why it doesn't show up in the question itself

    • 6 months ago
  2. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 0

    isomorphism requires both injective and surjective homomorphism

    • 6 months ago
  3. Meepi
    Best Response
    You've already chosen the best response.
    Medals 0

    I know that but I wouldn't have a clue how to prove this is not injective :)

    • 6 months ago
  4. John_ES
    Best Response
    You've already chosen the best response.
    Medals 1

    May be, you should consider two elements from the image space, and then try to find a pair of values from the domain space that have this image. For example, considering z=i^k, for some k's.

    • 6 months ago
  5. sirm3d
    Best Response
    You've already chosen the best response.
    Medals 0

    try prime and non-prime values of k.

    • 6 months ago
  6. Meepi
    Best Response
    You've already chosen the best response.
    Medals 0

    Showing that G is a group: let \(z_1, z_2 \in G\), then \(z_1^m=1,z_2^n=1\text{ for some }n\in\mathbb{Z}^+\) and \((z_1z_2)^{mn}=1\) so G is closed under multiplication, \((z_1^{-1})^m=1\) and also closed under inverses so G is a group. Homomorphism: was quite easy since it follows from commutativity of (\(\mathbb{C}\), *) let \(z_1, z_2\in G\), \(k > 1\) then \(\varphi(z_1z_2)=z_1^kz_2^k=\varphi(z_1)\varphi(z_2)\) Showing that it's surjective: To show that it's surjective we need to show that for every \(z \in G\), \(\varphi(w)=z\) for some \(w \in G\), let \(w = \sqrt[k]{z}\), \(\varphi(\sqrt[k]{z})=(\sqrt[k]{z})^k=z\), so all we need to show is that \(w \in G\), so \(w^n = 1\) for some positive integer, let this integer be kn where n is the order of z, then it's obvious \(w^{kn} = 1\) and since kn is also a positive integer, \(w \in G\). Now to show it's not injective every complex number has k k-th roots, we know k > 1, so for every \(z \in G\), there are at least 2 k-th roots, \(r_1 \text{ and } r_2\), but \(\varphi(r_1)=\varphi(r_2)\) so \(\varphi\) is not injective and thus not an isomorphism.

    • 6 months ago
  7. Meepi
    Best Response
    You've already chosen the best response.
    Medals 0

    Completely forgot I could also take roots of numbers :D

    • 6 months ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.