iouri.gordon
  • iouri.gordon
I wander if my thinking is right when solving this equation. I put details in the post. Don't know how to write an equation in the initial message. So when you click on the message you'll see details.
OCW Scholar - Single Variable Calculus
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

iouri.gordon
  • iouri.gordon
Find \[F \prime \left( X \right)\] if \[F \left( X \right)=\int\limits_{x}^{x ^{2}}\tan u du\]. So what I though is by FTC 1 \[F \left( X \right)=F \left( X ^{2} \right)-F \left( X \right)\], now taking derivative of both sides gives: \[F \prime \left( X \right) = 2XF \prime \left( X ^{2} \right)-F \prime \left( X \right)\], which in turn could be rewritten as: \[2x \frac{ d }{ dx }\int\limits_{0}^{x ^{2}}\tan u du - \frac{ d }{ dx }\int\limits_{0}^{x}\tan udu\] which in turn equals: \[2x \tan x ^{2}-\tan x\]. Am I doing the right thing?
anonymous
  • anonymous
I dont think my friend ?_? you could take another function G(X) instead taking the same F(X) ... but why not integrating tan(X) like sin/cos => -sin/-cos => -(sin/-cos) => f'/f => -ln|-cos|
anonymous
  • anonymous
\[\int\limits_{x}^{x^2}\tan(u)du \rightarrow \ln \left( \cos(x) \right) - \ln(\cos(x ^{2}))\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.