A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 3 years ago

Find a continuous f on the interval (0, inf) such that the integral of f(x) on (0, inf) exists, but the limit as x-> infinity =/= 0

  • This Question is Open
  1. anonymous
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    cosine, sine, lots. actually any function that can be dissolved vie fourier series into plain cos and sine will fit these parameters. integral will be zero. Did you want a non-zero integral?

  2. anonymous
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Maybe you like that answer. Otherwise, if you want an answer with a non-zero integral simply make your function of the form sine(x) + g(x); where g(x) is any function with an existing integral. It doesn't matter whether the limit of g(x) approaches zero when x-> infinity, because sine(x) +g(x) will still have a non-convergent limit (the limit will not exist). If you want the integral of your answer to be X, simply choose a g(x) that has integral X. The integral like the derivative is a linear operator and therefore obeys the first law of linearity ( int[f(x)+g(x)] = int[g(x)]+ int[f(x)]. A less clever way to do this that a lay mathematician may think would work is simply attaching the function g(x) to the function sine(x) (or cos (x)) like making a composite function of the form: from 0 to x inclusive, g(x), and from x to infinity exclusive, sine(x). However, this will not work as at the point that sin(x) is joined to g(x), there will be a cusp where the left limit will not equal the right limit. Right, that is all you will ever have to know about limit theory as a context to this problem. Though it is a fascinating area to specialize in and learn more about. A family of sinusoidal functions is also a perfect place to use a meta-limit that approaches sine of cos. But that is a relatively new (very new) concept that hasn't quite caught on yet. Stick to the conventional epsilon delta proof of limits if you want to verify that I am right about all this for your professor. I've done all this in my head, if you want the delta epsilon proof, I can supply this.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.